Source Idea
Asynchronous reasoning via rotary embeddings can be effectively applied to multi-modal models, enhancing real-time interaction and reasoning across text, image, and audio data.
View Source Idea →
Files (15)
- README.md
- metadata.json
- notebooks/data_exploration.ipynb
- requirements.txt
- scripts/download_data.sh
- src/__init__.py
- src/data/__init__.py
- src/data/data_loader.py
- src/data_loader.py
- src/evaluate.py
- src/model.py
- src/models/__init__.py
- src/models/multi_modal_model.py
- src/train.py
- src/utils.py
README Preview
# Multi-Modal Asynchronous Reasoning
## Project Description
This project explores the hypothesis that asynchronous reasoning via rotary embeddings can enhance real-time interaction and reasoning in multi-modal models, improving performance across text, image, and audio data.
## Research Hypothesis
Asynchronous reasoning via rotary embeddings can be effectively applied to multi-modal models, enhancing real-time interaction and reasoning across text, image, and audio data.
## Implementation Approach
We will develop a multi-modal model incorporating rotary embeddings to enable asynchronous reasoning. The model will be evaluated using standard datasets like VQA and AVQA.
## Setup Instructions
1. Clone the repository: `git clone `
2. Navigate to the project directory: `cd multi_modal_async_reasoning`
3. Install dependencies: `pip install -r requirements.txt`
4. Download datasets: `bash scripts/download_data.sh`
## Usage Examples
- Train the model: `python src/train.py`
- Evaluate the model: `python src/evaluate.py`
## Expected Results
We expect the model to demonstrate improved interaction speeds and reasoning accuracy compared to traditional multi-modal models.
## References
- [Asynchronous Reasoning: Training-Free Interactive Thinking LLMs](http://arxiv.org/abs/2512.10931v1)